Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance.

نویسندگان

  • Z-W Lee
  • X-Y Teo
  • E Y-W Tay
  • C-H Tan
  • T Hagen
  • P K Moore
  • L-W Deng
چکیده

BACKGROUND AND PURPOSE Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2 S) in cell survival. The present study investigated the effect of H2 S on the viability of cancer and non-cancer cells. EXPERIMENTAL APPROACH Cancer and non-cancer cells were exposed to H2 S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi ) was determined by ratiometric pHi measurement using BCECF staining. KEY RESULTS Continuous, but not a single, exposure to H2 S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2 S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2 S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. CONCLUSIONS AND IMPLICATIONS Low and continuous exposure to H2 S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of antioxidant and anti-cancer properties of curcumin / beta- and gamma-cyclodextrin complexes modified with chitosan nanoparticles on lung cancer cell A549

The aim of this study was to investigate the interaction modification of curcumin complex molecule (CUR) in beta- and gamma-cyclodextrin (β-CD and γ-CD) carriers with chitosan (CS) nanoparticles for targeted drug delivery and to compare their performance. The targeted drug delivery system includes the therapeutic agent of the CS nanoparticles targeting section of the same drug and the CD carrie...

متن کامل

Cisplatin suppresses the growth and proliferation of breast and cervical cancer cell lines by inhibiting integrin β5-mediated glycolysis.

Cancer cells harbor lower energy consumption after rounds of anticancer drugs, but the underlying mechanism remains unclear. In this study, we investigated metabolic alterations in cancer cells exposed to cisplatin. The present study exhibited cisplatin, known as a chemotherapeutic agent interacting with DNA, also acted as an anti-metabolic agent. We found that glycolysis levels of breast and c...

متن کامل

The miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer

Objective(s): To explore the correlation between expression patterns and functions of miR-383 and LDHA in hepatocellular cancer (HCC). Materials and Methods: We detected the expression of miR-383 and LDHA in 30 HCC tissues and their matched adjacent normal tissues using qRT-PCR. Then we performed MTT assay, foci formation assay, transwell migration assay, glucose uptake assay and lactate produc...

متن کامل

Truncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy

Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...

متن کامل

Intracellular Hyper-Acidification Potentiated by Hydrogen Sulfide Mediates Invasive and Therapy Resistant Cancer Cell Death

Slow and continuous release of H2S by GYY4137 has previously been demonstrated to kill cancer cells by increasing glycolysis and impairing anion exchanger and sodium/proton exchanger activity. This action is specific for cancer cells. The resulting lactate overproduction and defective pH homeostasis bring about intracellular acidification-induced cancer cell death. The present study investigate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • British journal of pharmacology

دوره 171 18  شماره 

صفحات  -

تاریخ انتشار 2014